This guide will walk you through setting up the Google Analytics MCP server, allowing you to query your GA4 data using natural language through Claude, Cursor, and other MCP clients.
Prerequisites
Before we begin, ensure you have:
- Python 3.8 or higher
- Google Analytics 4 property with data
- Service account with Analytics Reporting API access
Check your Python setup:
# Check Python version (need 3.8+)
python --version
python3 --version
# Check pip
pip --version
pip3 --version
Step 1: Setup Google Analytics Credentials
Create Service Account in Google Cloud Console
- Go to Google Cloud Console
- Create or select a project:
- New project: Click “New Project” → Enter project name → Create
- Existing project: Select from dropdown
- Enable the Analytics APIs:
- Go to “APIs & Services” → “Library”
- Search for “Google Analytics Reporting API” → Click “Enable”
- Search for “Google Analytics Data API” → Click “Enable”
- Create Service Account:
- Go to “APIs & Services” → “Credentials”
- Click “Create Credentials” → “Service Account”
- Enter name (e.g., “ga4-mcp-server”)
- Click “Create and Continue”
- Skip role assignment → Click “Done”
- Download JSON Key:
- Click your service account
- Go to “Keys” tab → “Add Key” → “Create New Key”
- Select “JSON” → Click “Create”
- Save the JSON file - you’ll need its path
Add Service Account to GA4
-
Get service account email:
- Open the JSON file
- Find the
client_email
field - Copy the email (format:
[email protected]
)
-
Add to GA4 property:
- Go to Google Analytics
- Select your GA4 property
- Click “Admin” (gear icon at bottom left)
- Under “Property” → Click “Property access management”
- Click ”+” → “Add users”
- Paste the service account email
- Select “Viewer” role
- Uncheck “Notify new users by email”
- Click “Add”
Find Your GA4 Property ID
- In Google Analytics, select your property
- Click “Admin” (gear icon)
- Under “Property” → Click “Property details”
- Copy the Property ID (numeric, e.g.,
123456789
)- Note: This is different from the “Measurement ID” (starts with G-)
Test Your Setup (Optional)
Verify your credentials:
-
Install Google Analytics Data library:
pip install google-analytics-data
-
Create test script (save as
test_ga4.py
):import os from google.analytics.data_v1beta import BetaAnalyticsDataClient # Set credentials path os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/path/to/your/service-account-key.json" # Test connection client = BetaAnalyticsDataClient() print("✅ GA4 credentials working!")
-
Run test:
python test_ga4.py
If you see ”✅ GA4 credentials working!” you’re ready to proceed.
Step 2: Install the MCP Server
Choose one method:
Method A: pip install (Recommended)
pip install google-analytics-mcp
MCP Configuration:
First, check your Python command:
# Test which Python command works on your system:
python3 --version
python --version
Then use the appropriate configuration:
If python3 --version
worked:
{
"mcpServers": {
"ga4-analytics": {
"command": "python3",
"args": ["-m", "ga4_mcp_server"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json",
"GA4_PROPERTY_ID": "123456789"
}
}
}
}
If python --version
worked:
{
"mcpServers": {
"ga4-analytics": {
"command": "python",
"args": ["-m", "ga4_mcp_server"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json",
"GA4_PROPERTY_ID": "123456789"
}
}
}
}
Method B: GitHub download
git clone https://github.com/surendranb/google-analytics-mcp.git
cd google-analytics-mcp
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
MCP Configuration:
{
"mcpServers": {
"ga4-analytics": {
"command": "/full/path/to/ga4-mcp-server/venv/bin/python",
"args": ["/full/path/to/ga4-mcp-server/ga4_mcp_server.py"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json",
"GA4_PROPERTY_ID": "123456789"
}
}
}
}
Step 3: Update Configuration
Replace these placeholders in your MCP configuration:
/path/to/your/service-account-key.json
with your JSON file path123456789
with your GA4 Property ID/full/path/to/ga4-mcp-server/
with your download path (Method B only)
Usage
Once configured, ask your MCP client questions like:
Discovery & Exploration:
- “What GA4 dimension categories are available?"
- "Show me all ecommerce metrics"
- "What dimensions can I use for geographic analysis?”
Traffic Analysis:
- “What’s my website traffic for the past week?"
- "Show me user metrics by city for last month"
- "Compare bounce rates between different date ranges”
Multi-Dimensional Analysis:
- “Show me revenue by country and device category for last 30 days"
- "Analyze sessions and conversions by campaign and source/medium"
- "Compare user engagement across different page paths and traffic sources”
E-commerce Analysis:
- “What are my top-performing products by revenue?"
- "Show me conversion rates by traffic source and device type"
- "Analyze purchase behavior by user demographics”
Quick Start Examples
Try these example queries to see the MCP’s analytical capabilities:
1. Geographic Distribution
Show me a map of visitors by city for the last 30 days, with a breakdown of new vs returning users
This demonstrates:
- Geographic analysis
- User segmentation
- Time-based filtering
- Data visualization
2. User Behavior Analysis
Compare average session duration and pages per session by device category and browser over the last 90 days
This demonstrates:
- Multi-dimensional analysis
- Time series comparison
- User engagement metrics
- Technology segmentation
3. Traffic Source Performance
Show me conversion rates and revenue by traffic source and campaign, comparing last 30 days vs previous 30 days
This demonstrates:
- Marketing performance analysis
- Period-over-period comparison
- Conversion tracking
- Revenue attribution
4. Content Performance
What are my top 10 pages by engagement rate, and how has their performance changed over the last 3 months?
This demonstrates:
- Content analysis
- Trend analysis
- Engagement metrics
- Ranking and sorting
Available Tools
The server provides 5 main tools:
get_ga4_data
- Retrieve GA4 data with custom dimensions and metricslist_dimension_categories
- Browse available dimension categorieslist_metric_categories
- Browse available metric categoriesget_dimensions_by_category
- Get dimensions for a specific categoryget_metrics_by_category
- Get metrics for a specific category
Dimensions & Metrics
Access to 200+ GA4 dimensions and metrics organized by category:
Dimension Categories:
- Time: date, hour, month, year, etc.
- Geography: country, city, region
- Technology: browser, device, operating system
- Traffic Source: campaign, source, medium, channel groups
- Content: page paths, titles, content groups
- E-commerce: item details, transaction info
- User Demographics: age, gender, language
- Google Ads: campaign, ad group, keyword data
- And 10+ more categories
Metric Categories:
- User Metrics: totalUsers, newUsers, activeUsers
- Session Metrics: sessions, bounceRate, engagementRate
- E-commerce: totalRevenue, transactions, conversions
- Events: eventCount, conversions, event values
- Advertising: adRevenue, returnOnAdSpend
- And more specialized metrics
Troubleshooting
If you get “No module named ga4_mcp_server” (Method A):
pip3 install --user google-analytics-mcp
If you get “executable file not found”:
- Try the other Python command (
python
vspython3
) - Use
pip3
instead ofpip
if needed
Permission errors:
# Try user install instead of system-wide
pip install --user google-analytics-mcp
Credentials not working:
- Verify the JSON file path is correct and accessible
- Check service account permissions in Google Cloud Console
- Verify GA4 access in your property settings
- Verify ID type:
- Property ID: numeric (e.g.,
123456789
) ✅ - Measurement ID: starts with G- (e.g.,
G-XXXXXXXXXX
) ❌
- Property ID: numeric (e.g.,
API quota/rate limit errors:
- GA4 has daily quotas and rate limits
- Try reducing the date range in your queries
- Wait a few minutes between large requests
Project Structure
google-analytics-mcp/
├── ga4_mcp_server.py # Main MCP server
├── ga4_dimensions.json # All available GA4 dimensions
├── ga4_metrics.json # All available GA4 metrics
├── requirements.txt # Python dependencies
├── pyproject.toml # Package configuration
├── README.md # This file
└── claude-config-template.json # MCP configuration template
License
MIT License
Source code: View the Google Analytics MCP repository on GitHub
Package: pip install google-analytics-mcp